Когда леонардо да винчи изобрел летательный аппарат. Изобретения леонардо да винчи

Леонардо да Винчи по праву занимает одно из первых мест среди изобретателей всех веков и народов. Он сумел предсказать и предопределить ход многих изобретений и мыслил так, что это расходилось с общепринятыми тогда нормами и подходами. В этой статье вы узнаете, что изобрёл Леонардо да Винчи. Мы постараемся дать весь список изобретений Леонардо и максимально раскрыть принципы и суть работы его механизмов.

Читайте также:

  • Изобретения Леонардо да Винчи — часть 1

Леонардо да Винчи получил известность ещё при жизни, но мировая слава и известность пришли к нему спустя столетия, когда в XIX веке были найдены его заметки и записи. В его бумагах содержались наброски и эскизы удивительных изобретений и механизмов. Многие свои работы он делил на специальные «кодексы», а общий объём его работ составляет порядка 13 тысяч страниц. Основным препятствием для реализации его идей был низкий технологический и научный уровень эпохи Средневековья. В XX веке многие из его изобретений были повторены если не в реальную величину, то в виде макетов и уменьшенных копий, хотя нередко находились смельчаки и энтузиасты, готовы повторять всё в точности так, как описывал великий изобретатель Леонардо да Винчи.

ЛЕТАТЕЛЬНЫЕ АППАРАТЫ

Леонардо да Винчи был практически одержим мечтами о летательных аппаратах и возможности полёта, ведь ни одна машина не способна вызвать того трепетного восхищения и удивления, как машина, способная парить в воздухе, как птица.

В его записях можно было встретить такую мысль «наблюдай, как плывёт рыба, и ты познаешь секрет полёта». Леонардо сумел совершить интеллектуальный прорыв. Он понял, что вода ведёт себя как воздух, так он получил прикладные знания о том, как создать подъёмную силу и проявил необыкновенное понимание предмета, которое поражает специалистов по сей день.

Один из интересных концептов, встречающихся в работе гения, является прототип вертолёта или винтового вертикального летательного аппарата.

Вокруг наброска присутствует и описание воздушного винта да Винчи (геликон). Покрытие винта должно было быть железное толщиной с нить. Высота должна быть примерно 5 метров, а радиус винта порядка 2 метров. Аппарат должен был приводиться в движение при помощи мускульной силы четырёх человек.

В приведённом ниже видео четверо инженеров-энтузиастов, историк и специалист по лёгким аэропланам постарались развить идею вертолёта Леонардо и постараться заставить его полететь, правда при этом им было разрешено использовать ряд современных технологий и материалов. В итоге выяснилось, что такая конструкция имеет ряд серьёзных недостатков, главным из которых было отсутствие необходимой для полёта тяги, поэтому энтузиасты пошли на значительные модификации, а вот получилось у них или нет, узнайте из видео.

Самолёт Леонардо да Винчи

Изобретатель недолго просидел с идеей вертолёта и решил пойти дальше, пробуя создать прототип самолёта. Здесь источником для знаний выступили птицы.

Ниже на картинке приведены чертежи крыльев, а также наброски дельтаплана, который после постройки в наше время оказался вполне себе работоспособным.

Хотя в полной мере нельзя назвать его изобретение самолётом, лучше всего ему подходит название махолёт или орнитоптер, то есть воздушный аппарат, поднимаемый в воздух за счёт реакции воздуха с его плоскостями (крыльями), которым путём мускульного усилия передаётся маховое движение, как у птиц

Леонардо тщательно начал делать расчёты и начал он с уток. Он измерил длину утиного крыла, после чего оказалась, что длина крыла равняется квадратному корню из её веса. Исходя из таких предпосылок, Леонардо решил, что для поднятия в воздух его махолёта с человеком на борту (что достигало порядка 136 килограмм), потребуется создать птицеподобные крылья длиною 12 метров.

Интересный факт о дельтаплане. В игре Assasin’s Creed 2 главный герой использует летающую машину (дельтаплан) да Винчи, чтобы долететь с одного края города Венеции до другого.

А если вы являетесь поклонником фильмов Брюса Уиллиса, то можете вспомнить, что в фильме «Гудзонский ястреб» упоминают дельтаплан и парашют да Винчи. А на дельтаплане да Винчи главный герой даже полетал.

Парашют Леонардо да Винчи

Конечно, Леонардо не изобретал свой парашют для того, чтобы спасаться в случае падения летательного аппарата, это был тоже летательный аппарат, который бы позволял плавно спускать с большой высоты. Ниже приведён эскиз парашюта, его расчёты и конструкция.

Парашют изобретателя имеет форму пирамиды, обтянутой плотной тканью. Основание пирамиды было длиною около 7 метров 20 см.

Интересно, что именно в России изобретатель Котельников доведёт до ума парашют да Винчи, сделав первый в истории ранцевый парашют, который можно будет крепить на спине у пилота и использовать при катапультировании.

В 2000-м году парашютист из Англии Андриан Николас решил испытать изобретение Леонардо в том виде, в котором он его придумал, заменив в нём только материал, понимая, что лён не выдержит такой нагрузки. Первая попытка оказалась провальной, поэтому ему пришлось использовать запасной парашют. Правда в 2008 году уже швейцарец Оливье Тепп сумел достигнуть успеха. Он отказался от жёсткой конструкции парашюта и спрыгнул с высоты в 650 метров. Естествоиспытатель утверждает, что сам спуск оказался безопасным, но управлять таким парашютом невозможно.

ИЗОБРЕТЕНИЯ ИЗ ОБЛАСТИ АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА

В сфере архитектуры и строительства Леонардо также добился впечатляющих познаний. Он исследовал прочность и сопротивляемость материалов, обнаружил ряд фундаментальных принципов, сумел понять, как оптимальнее всего передвигать различные объекты.

Леонардо исследовал силу, которая необходима для поднятия тел различной массы. Чтобы поднять тяжёлый объект по наклонной плоскости, обдумывалась идея использования системы винтов, лебёдок и кабестанов.

Кран для поднятия длинных предметов

Основание бруса или столба опирается на специальную платформу с парой колёс, которая подтягивается горизонтальным канатом снизу. Сила, которую необходимо прикладывать для подтягивания горизонтального каната всегда остаётся постоянной, а перемещение столба происходит по прямой линии.

Леонардо изобрёл систему из колёс и молотков для поднятия грузов. Работа системы похожа на работу ударов молота при чеканки, только происходит это всё на специальном зубчатом колесе. Три молотка со специальным клином, входящим между штифтов, бьют по колесу, вращая его и барабан, где прикреплён груз.

Передвижной подъемный кран и винтовой подъемник

Высокий подъёмный кран изображён на эскизе справа. Как можно догадаться, он предназначался для строительства высоких построек и сооружений (башни, купола, колокольни и так далее). Размещался кран на специальной тележке, которая двигалась вдоль направляющего каната, который протягивался над краном.

Винтовой подъёмник изображён на эскизе слева и предназначался для установки колонн и поднятия других тяжёлых предметов. Конструкция представляет из себя огромный винт, который приводится в движение силой четырёх человек. Понятно, что в данном случае высота и общая конструкция такого подъёмника ограничивает возможности его применения.

Эскиз подъемного крана на тележке и винтового подъемника

Кран на кольцевой платформе

Данный кран очень похож на современные краны по своей функциональности и использовался строителями в конце XIV века. Данный подъёмник позволяет перемещать тяжёлые объекты вокруг себя. Для его работы необходимо было задействовать двух рабочих. Первый находился на нижней платформе и при помощи барабана поднимал тяжёлые объекты, а на верхней платформе находился второй рабочий и с помощью штурвала вращал подъёмник вокруг своей оси. Также у крана были колёса, которые позволяли его передвигать. Такие краны использовались во времена Леонардо для установки столбов и колонн, строительства высоких стен, куполов церквей, крыш домов и прочего. Так как машины были деревянные, то после использования их обычно сжигали.

Экскаваторы Леонардо да Винчи

Сегодня вряд ли кого-то можно удивить экскаватором, но мало кто задумывается над тем, как они были придуманы. Есть точка зрения, что прототипы экскаваторов использовались ещё в Древнем Египте при постройке каналов и углубления русел рек, но по-настоящему концептуальную модель экскаватора придумал, конечно, великий Леонардо да Винчи.

Экскаваторы эпохи Возрождения, конечно, не отличались особой автоматикой и нуждались в ручном труде рабочих, но они его сильно облегчали, ведь теперь рабочим было проще перемещать изъятый грунт. Эскизы экскаваторов дают нам примерно представления о том, насколько огромные по тем временам это были машины. Экскаватор использовал принцип передвижения монорельса, то есть двигался вдоль одного рельса, перекрывая при этом всю ширину канала, а стрелы его кранов могли при этом поворачиваться на 180°.

Крепостная башня и двойная винтовая лестница

На рисунке вы можете видеть эскиз части крепости. Слева от крепостной башни сделан набросок винтовой лестницы, которая является важной составляющей башни. Конструкция лестницы похожа на всем известный винт Архимеда. Если вы присмотритесь к лестнице, то заметите, что она двойная и её части не пересекаются, то есть вы можете с товарищем подниматься или спускаться по разным спиралям лестницы и не знать друг о друге. Таким образом можно по одной стороне спускаться, а по другой подниматься. не мешая друг другу. Это крайне полезное свойство во время военной суеты. Каждая часть, соответственно, имеет свой вход и выход. На эскизе не добавлены ступеньки, но у реальной лестницы они есть.

Лестницу, изобретённую Леонардо, построили после его смерти в 1519 году во Франции внутри замка Шамбор, который служил королевской резиденцией. В Шамборе 77 лестниц, есть винтовые, но только двойная винтовая лестница, сделанная по эскизам да Винчи, стала интересной достопримечательностью.

Здание-лабиринт с множеством лестниц, входов и выходов

Леонардо также задумывался над более изощрёнными архитектурными концептами из лестниц. В данном случае это самый настоящий лабиринт! В этом сооружении 4 входа и 4 лестницы, которые закручиваются по спирали одна над другой, обвиваясь вокруг центральной колонны в виде квадратного столба.. Леонардо прекрасно умел находить гармонические структуры, сочетая геометрические особенности пространства, линии, формы и материалы, создавая в итоге целостные самодостаточные постройки.

Раздвижной (поворотный) мост

Эскиз поворотного моста Леонардо да Винчи

Ещё один мост, который, к сожалению, так и остался лишь проектом — это мост, способный пропускать корабли, плывущие по реке. Его главным отличием от современных мостов, работающих по принципу разведения, является способность поворачиваться, как дверь. Такой эффект достигается за счёт системы кабестанов, шарниров, лебёдок и противовесов, где один конец моста закреплён на специальном вращающемся механизме, а второй конец немного приподнимается для поворота.

Самоподдерживающийся («мобильный») мост

Этот мост является ответом на вопрос: «как можно из подручных средств быстро соорудить полноценную переправу?». Причём ответ крайне красив и оригинален.

Эскиз самоподдерживающегося мост Леонардо да Винчи

Данный мост образует арку, то есть является арочным, а сама сборка не нуждается ни в гвоздях, ни в верёвках. Распределение нагрузки в конструкции моста происходит за счёт взаимного распирания и давления элементов друг на друга. Собрать такой мост можно в любом месте, где растут деревья, а они растут почти везде.

Назначение моста было военным и было необходимо для мобильной и скрытной переброски войск. Леонардо предполагал, что такой мост может построить небольшая группа солдат, используя растущие рядом деревья. Сам Леонардо назвал свой мост «Надёжность».

Подвесной мост

Данный тип моста являлся ещё одним примером мобильного сборно-разборного моста, который солдаты могли собирать, используя канаты и лебёдки. Такой мост быстро собирался и разбирался после себя во время наступлений и отступлений войск.

Как и во многих других проектах Леонардно да Винчи, здесь использован принципы напряжения, статики и сопротивления материалов. Устройство этого моста похоже на устройство висячих мостов, где точно также основные несущие элементы сделаны из лебёдок и канатов и не нуждаются в дополнительных опорах.

Данный мост, созданный 500 лет назад, мог служить хорошим военным приспособлением и во времена Второй Мировой войны. Позже инженеры последующих веков пришли к мнению, что такая конструкция моста оптимальна, а принципы, использованные в подвесном мосту, применяются и во многих современных мостах.

Мост для турецкого султана

В 1502-1503 гг султан Баязид II начал искать проекты для постройки моста через бухту Золотой рог. Леонардо предложил султану интересный проект моста, который предполагал построить мост длиной 240 метра и шириной 24 метра, что выглядело в то время как нечто грандиозное. Интересно также отметить и то, что другой проект предложил Микеланджело. Правда ни одному из проектов так и не удалось оказаться реализованными на практике.

Прошло 500 лет и концепцией моста заинтересовались в Норвегии. В 2001 году недалеко от Осло в небольшом городе Ас была построена уменьшенная копия моста да Винчи. Архитекторы и строители постарались не отступать от чертежей мастера, но кое-где применили современные материалы и технологии.

Город будущего Леонардо да Винчи

В 1484-1485 гг в Милане разразилась чума, от которой умерло порядка 50 тысяч людей. Леонардо да Винчи предположил, что причиной чумы являлись антисанитария, грязь и перенаселённость, поэтому он предложил герцогу Людовико Сфорца построить новый город, лишённый всех этих проблем. Проект Леонардо сейчас бы нам напомнил различные попытки писателей-фантастов изобразить утопический город, в котором нет проблем, где решением всего являются технологии.

Наброски улиц идеального города будущего Леонардо да Винчи

По плану великого гения город состоял 10 районов, где должны были проживать по 30000 людей, при этом каждый район и дом в нём обеспечивались индивидуальным водопроводом, а ширина улиц должна была быть минимум равной среднестатистической высоте лошади (много позже Государственный совет Лондона сообщил, что данные пропорции являются идеальными и в соответствии с ними надо привести все улицы в Лондоне). При этом город был многоярусным. Ярусы связывались посредством лестниц и переходов. Самый верхний ярус занимали влиятельные и богатые представители общества, а нижний ярус город оставался для торговцев и оказания различного рода услуг.

Город мог стать самым великим достижением архитектурной мысли своего времени и мог бы реализовать многие технические достижения великого изобретателя. не стоит правда думать, что город представлял из себя сплошные механизмы, в первую очередь Леонардо делал акцент на удобстве, практичности и гигиене. Площади и улицы задумывались крайне просторными, что не соответствовало тогдашним средневековым представлениям.

Важным моментом была система водных каналов, связывающих весь город. Посредством сложной системы гидравлики вода приходила в каждую городскую постройку. Да Винчи считал, что это поможет изжить антисанитарный образ жизни и свести появление чумы и прочих заболеваний к минимуму.

Людовико Сфорца посчитал данный проект авантюрным и отказал в его реализации. Под самый конец своей жизни Леонардо пытался презентовать этот проект королю Франции Франциску I, но проект, к сожалению, никого не заинтересовал и остался нереализованным.

ВОДНЫЕ МЕХАНИЗМЫ И ПРИСПОСОБЛЕНИЯ

Леонардо создал множество эскизов, посвящённых водным устройствам, устройствам манипулирования водой, различным водопроводам и фонтанам, а также ирригационным машинам. Леонардо настолько любил воду, что занимался всем, что как-либо соприкасалось с водой.

Усовершенствованный архимедов винт

Древние греки в лице Архимеда давно изобрели устройство, позволяющее поднимать воду за счёт механики, а не ручного труда. Такой механизм изобрёл примерно в 287-222 годах до н.э. Леонардо да Винчи усовершенствовал механизм Архимеда. Он внимательно рассмотрел различные соотношения между углом наклона оси и необходимым количеством спиралей, чтобы выбрать оптимальные параметры. Благодаря доработкам, механизм винта стал доставлять больший объём воды при меньших потерях.

На эскизе винт изображён слева. Он представляет из себя трубку плотно обёрнутую трубку. Вода поднимается по трубке и попадает из специальную ванной наверх. Вращая рукоятку, вода будет литься непрерывным потоком.

Винт Архимеда до сих пор применяется для орошения сельхозугодий, а принципы винта лежат в основе множества промышленных насосных станций и насосов.

Водяное колесо

Леонардо старался отыскать наиболее оптимальный способ использования силы и энергии воды при помощи различных систем из колёс. Он изучал гидродинамику и изобрёл в конечном итоге водяное колесо, которое изображено ниже на эскизе. В колесе были сделаны специальные чаши, которые черпали воду из нижней ёмкости и переливали её в верхнюю.

Это колесо использовалось для очистки каналов и углубления дна. Располагаясь на плоту и имея четыре лопасти, водяное колесо приводилось в движение ручной силой и собирало ил. Ил укладывался на плот, который был закреплён между двумя лодками. Колесо перемещалось также вдоль вертикальной оси, что позволяло регулировать глубину зачерпывания колеса.

Водяное колесо с вёдрами

Леонардо предложил интересный способ доставки воды в условиях города. Для этого использовалась система из вёдер и цепей, на которых крепились вёдра. Интересно то, что для работы механизма не требовался человек, так как вся работа выполнялась рекой через водяное колесо.

Ворота для шлюза

Изобретателем была улучшена система шлюзовых ворот. Теперь можно было управлять количеством воды таким образом, чтобы выравнивать давление с обеих сторон шлюзовых ворот, что упрощало работу с ними. Для этого в больших воротах Леонардо сделал маленькие ворота с засовом.

Также Леонардо изобрёл канал с системой шлюзов, позволяющей кораблям продолжать судоходство даже по склонам. Система ворот позволяла контролировать уровень воды таким образом, чтобы корабли могли проходить по воде без затруднений.

Дыхательный аппарат под водой

Леонардо настолько любил воду, что придумал инструкции для погружения под воду, разработал и описал водолазный костюм.

Водолазы по логике Леонардо должны были участвовать в постановке судна на якорь. Водолазы в таком костюме могли дышать при помощи воздуха, который находил в подводном колоколе. Также костюмы имели стеклянные маски, позволявшие видеть под водой. Также костюм имел усовершенствованную дыхательную трубку, которой пользовались ещё в более древние времена ныряльщики. Шланг изготовлен из тростника, а места соединения скреплены непромокаемой материей. В самом шланге имеется пружинная вставка, позволяющая шлангу повысить свою прочность (ведь на дне большое давление воды), а также делает его более гибким.

В 2002 году профессиональный водолаз Жак Козенс устроил эксперимент и изготовил костюм водолаза по чертежам Леонардо, сделав его из свиной кожи и с бамбуковыми трубками, а также воздушным куполом. Опыт показал, что конструкция неидеальна и эксперимент имел лишь частичный успех.

Изобретение ласт

Перепончатая перчатка, которую изобрёл Леонардо, сейчас бы называлась ластами. Она позволяла оставаться на плаву и увеличивала дистанцию, на которую человеку мог заплыть в море.

Пять длинных палок из дерева продолжали строение скелета человека вдоль фаланг пальцев и соединялись между собой перепонками, как у водоплавающих. В основе современных ласт положен точно такой же принцип.

Изобретение водных лыж

Изобретатель старался решить задачу преодоления длинного мелководья солдатами и пришёл к выводу, что можно использовать шкуру, предварительно наполненную воздухом (мешки из кожи), прикрепив эту шкуру к ногам людей.

Если объём мешка будет достаточным, то он сумеет выдержать вес человека. Также Леонардо предполагал использовать брус из дерева, который обладал повышенной плавучестью. В руки солдаты должны брать два специальных шества. чтобы контролировать равновесие и двигаться вперёд.

Идея Леонардо оказалась неудачной, но похожий принцип лёг в основу водных лыж.

Спасательный круг

Если перевести надпись, которая расположена внизу рисунка, то можно прочесть «Как спасти жизнь в случае шторма или кораблекрушения». Это незамысловатое изобретение является ничем иным, как спасательным кругом, позволяющим человеку оставаться выше уровня воды и не тонуть. Предполагалось, что круг будет выполнен из лёгкой коры дубы, который можно было встретить везде в Средиземноморье.

Колесная лодка

В Средние века моря и реки оставались удобными и оптимальными транспортными путями. Милан или Флоренция жизненно зависели от морского судоходства и наличия быстрых и безопасных водных средств передвижения.

Леонардо создал эскиз лодки с гребным колесом с лопастями. Четыре лопасти похожи по форме на плавники водоплавающих. Человек крутил двумя ногами педали, тем самым вращая колесо. Принцип возвратно-поступательных движений заставлял колесо крутиться против часовой стрелки, поэтому лодка начинала движение вперёд.

Модель лодки Леонардо

На видео ниже можете посмотреть более детально устройство лодки с колёсами:

Леонардо да Винчи [Настоящая история гения] Алферова Марианна Владимировна

Летательные аппараты. Грезы о полете. Орнитоптеры и самолет

Идея создать машину, которая поможет человеку подняться в воздух, буквально преследовала Леонардо всю жизнь. Много часов он наблюдал за полетом птиц, изучал их анатомию. Как механик Мастер пытался придумать механизм, которым человек должен был управлять с помощью рук и ног, приводя в движения машущие крылья. Большинство летательных механизмов Мастера – орнитоптеры, то есть машины, которые помог ли бы человеку уподобиться птице. Предполагалось, что человек поднимется в воздух, взмахивая крыльями, как большой орел.

Леонардо да Винчи. Рисунок вертикального орнитоптера. Перо, чернила. Здесь человек сидит в машине и приводит в движение педали. Механизм помещался внутри кожуха в форме шара. Это скорее фантазии на тему полета, нежели реальный чертеж машины

Леонардо построил испытательный стенд с крылом, пытаясь выяснить, как же поднять человека в воздух. Воссозданные по чертежам Леонардо модели орнитоптеров не могут летать – но они в малейших деталях воспроизводят движения птичьих крыльев.

Механизмы, в которых человек приводит крылья движениями рук и ног, можно встретить в записях Леонардо в различных вариантах. Иногда это одна пара крыльев, иногда две. Один из проектов – рисунок летательного аппарата, в котором человек должен был лежать, продев ноги в устройства, напоминающие стремена, – одна нога поднимает крыло, другая опускает. Проще сказать: человек лежа крутит педали, а привод с помощью тросов и рычагов заставляет двигаться крылья. Это похоже на воздушный корабль, сев на который, человек станет грести по воздуху, как по воде.

У да Винчи есть еще один вариант орнитоптера – когда две пары крыльев приводятся в движение как руками, так и ногами. При этом человек поднимает крылья руками с помощью барабана, а опускает ногами. Человек опять же находится в аппарате лежа. Но Леонардо довольно скоро понял, что человеку попросту не хватит силы мышц, чтобы привести в движение крылья со скоростью, достаточной, чтобы поднять его в воздух. В самом деле, парадокс заключается в том, что довольно простые расчеты показывают: размахивать такими крыльями может только тяжеловес, но при этом его усилий хватит лишь на то, чтобы поднять в воздух щуплого парнишку. То есть, если бы один человек мог махать за другого, то человек давно бы летал, как птица. Но физику не обманешь, в отличие от учителя физики, когда ученик выдает списанное решение за свое.

Придя к столь неутешительным выводам (имеется в виду – нехватка мускульной силы), Мастер стал искать механизмы, способные помочь в этом человеку. На одном из рисунков появился механизм, в котором используются пружины. Сама схема, придуманная Леонардо, с точки зрения механики, была оригинальной, но опять же не имела практического воплощения.

В конце концов Леонардо отказался от идеи машущего крыла и стал думать о крыле планирующем. На одной странице с его записями изображен планирующий лист и рядом – изображение неподвижного крыла. Так в его фантазиях явился механизм, напоминающий современный дельтаплан. Для того чтобы управлять планером, использовался механизм балансировки и подвижное крыло. Сохранился рисунок, на котором человек расположен в подвеске, чем-то напоминающей нынешнюю подвеску дельтаплана. Правда, пилот изображен вертикально. Мастер исследовал равновесие планера – тот должен быть построен из бамбука и с оттяжками из сырого шелка или из кожи. Человек располагался намного ниже этой плоскости, что позволяло уравновесить конструкцию.

Реконструкция орнитоптера Леонардо, получившего наименование «Большая птица». Википедия. В данной конструкции Леонардо тщательно сымитировал движения птичьих крыльев

Уже в наше время в Великобритании из материалов времен Леонардо построили «дельтаплан» по его чертежам, и аппарат с успехом прошел испытания на меловых утесах Англии.

Без сомнения, Леонардо ставил перед собой задачу, которую невозможно было решить, имея в распоряжении технологии XV века. Разрабатывая конструкции своих летательных аппаратов, да Винчи рассчитывал только на силу человека, пытаясь максимально использовать мышцы пилота, заставляя его работать руками, ногами, и даже – головой. Не в смысле соображать, а в прямом – использовать голову как часть привода. Но, как бы ни старался Леонардо, в его время полет был невозможен – в распоряжении великого Мастера не было двигателя и необходимых легких материалов, чтобы создать летательный аппарат. Свои модели Леонардо предполагал строить из дерева и ткани. Хотя планер, пожалуй, создать было возможно.

Первые полеты человек совершил на воздушных шарах спустя три века после Леонардо. В 1783 году поднялся в воздух сначала воздушный шар братьев Монгольфье, наполненный нагретым воздухом, а затем, в том же году, – наполненный водородом аэростат Жака Александра Сезара Шарля. И хотя можно было кое-как управлять воздушным шаром (например, использовать мешки с балластом и якорь), все равно это был полет по воле воздушных течений – шар летел туда, куда гнал его ветер, а не туда, куда планировал направить его человек. Скорее, это могло стать развлечением, упоением полетом как таковым, нежели имело практическое значение.

Только в 1852 году был создан аппарат, которым можно было управлять, – так появился дирижабль, летательный аппарат сигарообразной формы, с винтом, который приводила в движение паровая машина.

В 80-х годах XIX века начинается «битва за небо». Ученые, соревнуясь друг с другом, сооружают летательные аппараты один чуднее другого. Параллельно начинается разработка теории. Именно в это время появляются пригодные для полетов планеры.

Как вы понимаете, сам по себе планер отправиться в полет не может – его надо разогнать с помощью лебедки или столкнуть с наветренной стороны горы. Первый планер современного типа, поднявший человека в воздух, сконструировал английский ученый и изобретатель Джордж Кейли в 1853 году.

В 1882 году Александр Можайский создал и испытал моноплан с двумя паровыми машинами. Смогла ли эта конструкция оторваться от земли, так точно и неизвестно. Испытания в итоге закончились катастрофой. А для продолжения исследований денег, к сожалению, не нашлось.

Первые авиационные моторы – это громоздкие и тяжелые паровые машины. Проект первого аэроплана с мотором такого типа принадлежит немцу Фридриху Маттису. В центре ромбовидного крыла самолета Маттис предполагал разместить тяжелый двигатель. Его конструкция так и осталась на бумаге и вскоре была забыта. Более продуманно подошел к своему делу ученый из Великобритании Уильям Хенсон. Этот аппарат имел паровой двигатель мощностью около 30 лошадиных сил, двигатель приводил в действие воздушные винты диаметром чуть более трех метров. Для того чтобы уменьшить вес машины, англичанин предложил заменить обычный котел системой сосудов конической формы и использовать воздушный конденсатор. В 1844–1847 годах Хенсон произвел несколько испытаний своих аэропланов. Но и они все закончились неудачно. Слава создателя первого самолета, оторвавшегося от земли, принадлежит британцу Джону Стрингфеллоу. Однако такая машина по-прежнему не могла реально покорить небо. На исходе XIX века созданием аэропланов с паровыми двигателями увлекся «пушечный король» Хайрем Максим. Он решил не тратить время на опыты и сразу же приступил к строительству самолета. Его аппарат был снабжен паровой машиной мощностью уже в 360 лошадиных сил, а размерами его «чудище» походило на двухэтажный дом. Самолет весил три с половинной тонны! В итоге эта громадина, на мгновение оторвавшись от земли, тут же рухнула и превратилась в обломки. Таких охотников взлететь, не тратя время на инженерные изыскания, нашлось немало. Французский инженер Клеман Адер решил взять количеством и построил сразу несколько аэропланов, которые в итоге не мог ли летать. Когда лучший из его выводка, «Авион-три», разбился в присутствии государственной комиссии, горе-инженер сжег все свои чертежи аэропланов и переключился на автомобили. В итоге к концу XIX столетия изобретатели и конструкторы поняли, что из-за своих размеров и массы паровые двигатели невозможно применить в самолетостроении. Хотя об этом догадывались и раньше, пытаясь приспособить на аэроплан электрический мотор.

Первыми летательными аппаратами, которые стали выполнять регулярные рейсы, были дирижабли.

Однако в начале XX века у дирижаблей появился новый конкурент. После того как создали легкий и надежный двигатель внутреннего сгорания, многие конструкторы вновь занялись проектированием аппаратов тяжелее воздуха. Результат не заставил себя долго ждать: 17 декабря 1903 года поднялся в небо самолет братьев Райт. Он был снабжен бензиновым двигателем с двумя цилиндрами, расположенными горизонтально.

Для того чтобы самолет не только оторвался от земли, но и полетел, необходимо было решить две важнейшие проблемы – создать двигатель, способный поднять в воздух конструкцию тяжелее воздуха, и найти способ управлять аппаратом в воздухе. Братья Райт создали необходимый двигатель и решили вопрос управления с помощью «перекоса крыла». Этот принцип использовался недолго, вскоре были изобретены элероны. Но самолеты не сразу безраздельно покорили небо. Еще долго продолжалось соревнование, кто же будет царить в небе – дирижабль или самолет.

Дирижабль – летательный аппарат легче воздуха, он «плавает» в атмосфере за счет выталкивающей силы, так что газ в оболочке должен быть легким, по плотности меньше плотности атмосферы. Обычно оболочка дирижабля наполняется водородом или гелием. Однако водород легко воспламеняется. Гелий – инертный газ и потому безопасен, но это редкий и дорогой газ, в начале XX века его запасами располагали, в основном, Соединенные Штаты Америки, так что Европе приходилось довольствоваться водородом. Приходилось очень тщательно соблюдать технику пожарной безопасности: при посадке на дирижабль пассажиры сдавали спички и зажигалки.

Путешествие в дирижабле в начале XX века по комфортабельности значительно превосходило даже нынешние самолеты, не говоря о первых конструкциях в стиле братьев Райт. На пассажирском дирижабле имелись ресторан с кухней и салон для отдыха. Знаменитый цеппелин «Гинденбург» был оборудован небольшим, специально изготовленным для дирижабля облегченным роялем.

И хотя дирижабли долгое время успешно конкурировали с самолетами, поскольку в то время могли переносить куда большие грузы, нежели самолеты, все равно аппараты тяжелее воздуха выиграли битву за воздух.

Считается, что эпоха дирижаблей закончилась, когда при посадке в Лейкхерсте (США) сгорел немецкий пассажирский дирижабль «Гинденбург». Вечером 3 мая 1937 года «Гинденбург» вылетел из Германии и взял курс на запад. Он пересек Атлантический океан, и уже 6 мая его пассажиры увидели Манхэттен. Желая угодить пассажирам, а заодно похвастаться цеппелином перед американцами, капитан сделал круг над городом. После этого дирижабль направился в сторону базы Лейкхерст. Посадку осложнило приближение грозового фронта. Во время посадки произошло возгорание, за 15 секунд огонь распространился по дирижаблю, и произошел взрыв, еще через 15 секунд «Гинденбург» рухнул на землю рядом со швартовочной мачтой. При крушении погибли 36 человек. Независимо от того, что послужило причиной возгорания, катастрофа «Гинденбурга» привела к прекращению строительства пассажирских дирижаблей. Отныне небо всецело принадлежало самолетам. Дирижабли на гелии использовались только для разведки во время войны.

За время между Мировыми войнами в технологии самолетостроения произошел огромный прогресс. Первые самолеты строились из древесины и ткани, но теперь конструкторы перешли к почти полностью алюминиевому фюзеляжу. Все знают, что алюминий – очень мягкий материал, алюминиевую ложку или вилку можно согнуть руками без особых усилий, и для корпуса самолета чистый алюминий не подходит. Но немецкие инженеры придумали сплав алюминия с медью и марганцем, такой сплав после термической обработки приобретает свойства, необходимые для авиастроения. Это – дюралюминий (дюраль в просторечии), по названию города Дюрен, где было налажено его производство. Из этого сплава в 1917 году немецкая фирма «Юнкерс» построила цельнометаллический моноплан.

Развитие двигателей для самолетов также шло быстрыми темпами. Движущей силой в развитии самолетостроения не последнюю роль играли многочисленные призы за рекорды скорости и дальности.

Итак, мы видим, что для решения тех проблем, над которыми бился Леонардо, понадобились годы непрерывного труда ученых и инженеров, создание новых теорий, новых конструкций, новых двигателей и новых материалов. Ничего этого не было в распоряжении Мастера в XV веке. Промышленная революция дала все это, а также – преемственность знаний, когда один исследователь или конструктор может продолжить работу там, где ее закончил другой.

Однако Леонардо оставил нам то, что, быть может, не менее важно, чем достижение всех промышленных революций, – веру в безграничные возможности человека.

Данный текст является ознакомительным фрагментом. Из книги Откровения ездового пса автора Ершов Василий Васильевич

И так в каждом полете - Володя, в чем дело? Почему ты не выполняешь команды директора?- А я снос подбираю по КУРС-МП, как на "Яке".- Так у нас же не "Як". У нас директорная система подбирает снос и выдает тебе команду. Слепо исполняй. Слепо! Тупо выполняй команду! И она приведет

Из книги Фабрика здоровья автора Смирнов Алексей Константинович

Из книги О космолетах автора Феоктистов Константин Петрович

Грезы и будни Казалось бы - уж логопеды? они-то в чем провинились?Да ни в чем, конечно. Просто я уже не раз намекал, что в нашу больницу стянулись очень странные люди. И стала она резервацией.Я любил навещать логопедов, отдыхать с ними душой. Чай пил, разговоры

Из книги Три жизни Жюля Верна автора Андреев Кирилл Константинович

РАКЕТА, САМОЛЕТ ИЛИ РАКЕТНЫЙ САМОЛЕТ? Сколько бы ни говорили о будущих кораблях и станциях, не только конструктивные проблемы определяют возможность и экономику их создания. Такова уж природа космонавтики, что во все времена многое будет зависеть от средств сугубо

Из книги Незавещанное наследство. Пастернак, Мравинский, Ефремов и другие автора Кожевникова Надежда Вадимовна

В полете Был ясный октябрьский полдень 1862 года, когда Жюль Верн, прижимая к себе рукопись, позвонил у подъезда старинного дома № 18 по улице Жакоб. Рослый слуга отворил дверь.– Мсье Этсель ждет вас, – лаконично сообщил он.Лестница, ведущая на второй этаж, казалась

Из книги Небо начинается с земли. Страницы жизни автора Водопьянов Михаил Васильевич

УТРАЧЕННЫЕ ГРЕЗЫ Не знаю, когда и как это произошло. Ничто вроде бы не предвещало разрыва-отрыва с привычным моим родителям. Разве что с малолетства тяга к перемене места у меня сочеталась с подступающей к горлу тоской. Даже если уезжали мы ненадолго, всего лишь на месяц, в

Из книги Генеральный конструктор Павел Сухой: (Страницы жизни) автора Кузьмина Лидия Михайловна

В дневном полете Вскоре на своем старом самолете, но с новым мотором, с тем же экипажем мы стали вылетать на бомбежки вражеских объектов в Смоленске, Орле, Калуге. Летали мы только по ночам, сбрасывали бомбы в темноте и не всегда могли видеть результаты налетов.Однажды,

Из книги Аэроузел-2 автора Гарнаев Александр Юрьевич

Глава VIII. Геометрия замыслов… Крыло в полете меняет свою стреловидность. Дальность - больше, разбег и пробег - меньше. «Удивительно интересная машина». «Не снижайся так низко - дух захватывает!». Экспериментальный самолет - Сухой неспроста взялся за эту тему! Битва за

Из книги И время ответит… автора Фёдорова Евгения

Беспилотные летательные аппараты (БЛА) Проекты 121,123,130,139,141 и 143 Военные специалисты в середине 50-х годов активно требовали постепенного перехода с пилотируемых летательных аппаратов на беспилотные. Беспилотная авиация становилась одной из наиболее быстро развивающихся

Из книги Неизвестный Лавочкин автора

Из книги Боевые самолеты Туполева автора Якубович Николай Васильевич

Глава 13 Беспилотные летательные аппараты Беспилотными боевыми летательными аппаратами в ОКБ-301 начали заниматься в начале 1950-х годов. Например, в 1950–1951 годах разрабатывался телеуправляемый самолет-снаряд С-С-6000 полетным весом 6000 кг, предназначавшийся для поражения

Из книги Воздушный путь автора Сикорский Игорь Иванович

Глава 5 Беспилотные летательные аппараты Помимо традиционной самолетной тематики, во второй половине 1950-х годов ОКБ-156 приступило к разработке беспилотных летательных аппаратов, и первым в этом ряду стал стратегический дальний ударный самолет (крылатая ракета) Ту-121 («С»)

Из книги автора

Летательные машины На первых страницах этой книги было сказано вкратце о приборах «тяжелее воздуха». Упоминалось также, что к этому разряду относятся все птицы и летающие насекомые и что полет их происходит совершенно иным образом, чем движение в воздухе всякого

“Посмотри на крылья, которые, ударяясь о воздух, поддерживают тяжёлого орла в тончайшей воздушной выси, вблизи стихии огня, и посмотри на движущийся над морем воздух, который, ударяя в надутые паруса, заставляет бежать нагруженный тяжёлый корабль; на этих достаточно веских и надёжных основаниях сможешь ты постигнуть, как человек, преодолевая своими искусственными большими крыльями сопротивление окружающего воздуха, способен подняться в нём ввысь."

-- C.A. 381 v.a., из сочинений Леонардо да Винчи, о летании.

Леонардо да Винчи родился в середине XV века. Он являлся ярким примером «универсального человека». За свою жизнь он преуспел в живописи, скульптуре, музыке, математике, анатомии, естествознании, технике и архитектуре. Он был автором многих изобретений и проектов.

Леонардо да Винчи был убежден, что “человек, преодолевающий сопротивление воздуха с помощью больших искусственных крыльев, может подняться в воздух”. Уверенный в своей правоте, Леонардо придумал аппарат, который позволил бы человеку парить в воздухе, как птица, размахивая большими механическими крыльями, приводимыми в движение только силой мышц.

Чтобы сконструировать крылья орнитоптера, Леонардо детально изучал анатомию птичьего крыла. Наблюдая за полетом птицы, ученый заметил, что она машет крыльями всегда по-разному: зависая в воздухе, перелетая с места на место или приземляясь. Тщательное изучение механизма полета птиц натолкнуло Леонардо да Винчи на верную мысль о том, что основная тяга создается концевыми частями крыла.

Леонардо да Винчи до малейших подробностей проработал несколько проектов (1485-1497 гг.) различных типов орнитоптеров: в лежачим положением летчика, орнитоптер-лодку, с вертикальным расположением летчика и др. При разработке этих летательных аппаратов древний ученый выдвинул ряд замечательных конструктивных идей, которые используются сейчас в современном самолетостроении: фюзеляж в виде лодки, поворотное хвостовое оперение, убирающееся шасси.

Желая увеличить мощность взмахов крыльев, Леонардо да Винчи считал, что наряду с силой рук, необходимо использовать и силу ног человека. В его разработках был еще проект орнитоптера, в качестве источника энергии которого применялся натянутый лук.

Интересно, что идею создания орнитоптера Леонарду да Винчи подкинула обыкновенная… стрекоза.


Небольшая инструкция по сборке:

(Перевод с чешского, в коем не сильна, делала сама. Могут быть неточности, поэтому ориентируйтесь по ходу работы)

Модель орнитоптера несложна в сборке, но требует осторожности и сосредоточенности.

Все части модели необходимо аккуратно вырезать. Помимо ножниц и клея , для формирования уже склеенных деталей, вам могут понадобиться: пинцет, тупой нож, карандаш, скотч .

Части, отмеченные красным цветом, укрепите (подклейте) для прочности картоном.

Места, где нужно приклеить распорки к крыльям, обозначены черными точками.

Числа, которые указаны в кружочках, будут служить вам последовательностью в работе, т.е. первыми собираются детали крыльев с числами 1 и 2, потом, следуют части 3 и 4 и так далее. После высыхания, некоторые детали, в частности, крыло, нужно немного округлить (например, о край стола).

В ходе стыковки деталей, устранить цветовые недостатки можно акварелью, покрасив стыки в соответствующий тон.

Готовую модель орнитоптера можно подвесить на нить или поставить на столе с подставкой - решайте сами.

Если решите подвесить, проткните острой иглой на крыльях два отверстия, третье крепление разместите в задней (хвостовой) части орнитоптера. Эти места обозначены голубыми линиями, см. рисунок.

Чтобы летательный аппарат мог стоять на столе, необходимо собрать подставку в виде цилиндра - части 28-30. По контуру нижней части 29, проложите и укрепите скотчем кусочек проволоки (например, канцелярскую скрепку). Чтобы модель стояла уверенно, подставку необходимо утяжелить, для этого на дно подставки положите грузик - большую гайку.

В конце работ, на подставку не забудьте прикрепить этикетку “Ornitoptéra Leonardo da Vinci ” части 31-32.

Проект колеса с четырьмя арбалетами

Рисунки Леонардо

Искусство и наука

Рисунок большой пушки, поставленной на лафет

Этот рисунок изображает внутренний двор крепости, заполненный боеприпасами, многочисленными пушками, лафетами и ядрами. В центре рисунка находится большое сооружение, которое используется, чтобы удерживать огромную пушку на лафете. Управляет орудием большая группа обнаженных мужчин. На переднем плане мы видим подставку для пушки. Винчи надеялся, что в Милане у него будет возможность поработать над созданием подобных машин, мирных или военных, но ни один из его проектов так и не был претворен в жизнь.

Рисунок сочлененных крыльев

После подробных исследований в области летательных машин, управляемых исключительно силой мускулов человеческого тела, Леонардо попытался вплотную приблизиться к созданию механической машины для полета, которая управлялась бы только мускулами ног пилота. Инженер был убежден, что силы мускулов человеку достаточно, чтобы подняться в воздух.

Модель рычага, сообщающего крылу вращательное движение

Эти рисунки изображают модель рычага для управления крыльями. Она появилась в результате изучения техники полета, чем долгие годы занимался Леонардо. На рисунке можно разглядеть «внутренности» сложного механизма, рисунок сопровождается подробным описанием.

Летательный аппарат, повторяющий структуру крыльев птицы, с твердыми перемычками

Крылья летательного аппарата Леонардо основывались на строении крыльев птиц и летучих мышей. Чтобы пилоту было удобно во время полета, Леонардо отводит ему место в центре машины, за механизмом крыльев.

Рисунок летательной машины

Мастер на протяжении всей жизни изучал механизм работы птичьих крыльев. В особенности его интересовали пропорции крыльев и их функционирование, и полученные знания он использовал в проектировании летательных машин.

Заключение

Безусловно, это не все рисунки Леонардо , заслуживающие внимания, однако все они являются отдельными произведениями и могут оцениваться вне контекста автора и других его работ.

Чертежи и рисунки Леонардо обновлено: Сентябрь 11, 2017 автором: Глеб